skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bodik, Rastislav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tensor compilers, essential for generating efficient code for deep learning models across various applications, employ tensor graph rewrites as one of the key optimizations. These rewrites optimize tensor computational graphs with the expectation of preserving semantics for tensors of arbitrary rank and size. Despite this expectation, to the best of our knowledge, there does not exist a fully automated verification system to prove the soundness of these rewrites for tensors of arbitrary rank and size. Previous works, while successful in verifying rewrites with tensors of concrete rank, do not provide guarantees in the unbounded setting. To fill this gap, we introduce TensorRight, the first automatic verification system that can verify tensor graph rewrites for input tensors of arbitrary rank and size. We introduce a core language, TensorRight DSL, to represent rewrite rules using a novel axis definition, called aggregated-axis, which allows us to reason about an unbounded number of axes. We achieve unbounded verification by proving that there exists a bound on tensor ranks, under which bounded verification of all instances implies the correctness of the rewrite rule in the unbounded setting. We derive an algorithm to compute this rank using the denotational semantics of TensorRight DSL. TensorRight employs this algorithm to generate a finite number of bounded-verification proof obligations, which are then dispatched to an SMT solver using symbolic execution to automatically verify the correctness of the rewrite rules. We evaluate TensorRight’s verification capabilities by implementing rewrite rules present in XLA’s algebraic simplifier. The results demonstrate that TensorRight can prove the correctness of 115 out of 175 rules in their full generality, while the closest automatic, bounded-verification system can express only 18 of these rules. 
    more » « less
    Free, publicly-accessible full text available January 22, 2026
  2. Tensor compilers, essential for generating efficient code for deep learning models across various applications, employ tensor graph rewrites as one of the key optimizations. These rewrites optimize tensor computational graphs with the expectation of preserving semantics for tensors of arbitrary rank and size. Despite this expectation, to the best of our knowledge, there does not exist a fully automated verification system to prove the soundness of these rewrites for tensors of arbitrary rank and size. Previous works, while successful in verifying rewrites with tensors of concrete rank, do not provide guarantees in the unbounded setting. To fill this gap, we introduce TensorRight, the first automatic verification system that can verify tensor graph rewrites for input tensors of arbitrary rank and size. We introduce a core language, TensorRight DSL, to represent rewrite rules using a novel axis definition, calledaggregated-axis, which allows us to reason about an unbounded number of axes. We achieve unbounded verification by proving that there exists a bound on tensor ranks, under which bounded verification of all instances implies the correctness of the rewrite rule in the unbounded setting. We derive an algorithm to compute this rank using the denotational semantics of TensorRight DSL. TensorRight employs this algorithm to generate a finite number of bounded-verification proof obligations, which are then dispatched to an SMT solver using symbolic execution to automatically verify the correctness of the rewrite rules. We evaluate TensorRight’s verification capabilities by implementing rewrite rules present in XLA’s algebraic simplifier. The results demonstrate that TensorRight can prove the correctness of 115 out of 175 rules in their full generality, while the closest automatic,bounded-verification system can express only 18 of these rules. 
    more » « less
    Free, publicly-accessible full text available January 7, 2026
  3. 3D Computer-Aided Design (CAD) modeling is ubiquitous in mechanical engineering and design. Modern CAD models are programs that produce geometry and can be used to implement high-level geometric changes by modifying input parameters. While there has been a surge of recent interest in program-based tooling for the CAD domain, one fundamental problem remains unsolved. CAD programs pass geometric arguments to operations using references, which are queries that select elements from the constructed geometry according to programmer intent. The challenge is designing reference semantics that can express programmer intent across all geometric topologies achievable with model parameters, including topologies where the desired elements are not present. In current systems, both users and automated tools may create invalid models when parameters are changed, as references to geometric elements are lost or silently and arbitrarily switched. While existing CAD systems use heuristics to attempt to infer user intent in cases of this undefined behavior, this best-effort solution is not suitable for constructing automated tools to edit and optimize CAD programs. We analyze the failure modes of existing referencing schemes and formalize a set of criteria on which to evaluate solutions to the CAD referencing problem. In turn, we propose a domain-specific language that exposes references as a first-class language construct, using user-authored queries to introspect element history and define references safely over all paths. We give a semantics for fine-grained element lineage that can subsequently be queried; and show that our language meets the desired properties. Finally, we provide an implementation of a lineage-based referencing system in a 2.5D CAD kernel, demonstrating realistic referencing scenarios and illustrating how our system safely represents models that cause reference breakage in existing CAD systems. 
    more » « less
  4. Modern web browsers rely on layout engines to convert HTML documents to layout trees that specify color, size, and position. However, existing layout engines are notoriously difficult to maintain because of the complexity of web standards. This is especially true for incremental layout engines, which are designed to improve performance by updating only the parts of the layout tree that need to be changed. In this paper, we propose Medea, a new framework for automatically generating incremental layout engines. Medea separates the specification of the layout engine from its incremental implementation, and guarantees correctness through layout engine synthesis. The synthesis is driven by a new iterative algorithm based on detecting conflicts that prevent optimality of the incremental algorithm. We evaluated Medea on a fragment of HTML layout that includes challenging features such as margin collapse, floating layout, and absolute positioning. Medea successfully synthesized an incremental layout engine for this fragment. The synthesized layout engine is both correct and efficient. In particular, we demonstrated that it avoids real-world bugs that have been reported in the layout engines of Chrome, Firefox, and Safari. The incremental layout engine synthesized by Medea is up to 1.82× faster than a naive incremental baseline. We also demonstrated that our conflict-driven algorithm produces engines that are 2.74× faster than a baseline without conflict analysis. 
    more » « less
  5. null (Ed.)
    This paper presents Solar, a system for automatic synthesis of adversarial contracts that exploit vulnerabilities in a victim smart contract. To make the synthesis tractable, we introduce a query language as well as summary-based symbolic evaluation, which sig- nificantly reduces the number of instructions that our synthesizer needs to evaluate symbolically, without compromising the preci- sion of the vulnerability query. We encoded common vulnerabilities of smart contracts and evaluated Solar on the entire data set from Etherscan. Our experiments demonstrate the benefits of summary- based symbolic evaluation and show that Solar outperforms state- of-the-art smart contracts analyzers, teether, Mythril, and Con- tractFuzzer, in terms of running time and precision. 
    more » « less
  6. Utilizing memory and register bandwidth in modern architectures may require swizzles — non-trivial mappings of data and computations onto hardware resources — such as shuffles. We develop Swizzle Inventor to help programmers implement swizzle programs, by writing program sketches that omit swizzles and delegating their creation to an automatic synthesizer. Our synthesis algorithm scales to real-world programs, allowing us to invent new GPU kernels for stencil computations, matrix transposition, and a finite field multiplication algorithm (used in cryptographic applications). The synthesized 2D convolution and finite field multiplication kernels are on average 1.5–3.2x and 1.1–1.7x faster, respectively, than expert-optimized CUDA kernels. 
    more » « less
  7. Developing server applications that offload computation and data to a NIC accelerator is laborious because one has to explore the design space of decisions about data placement and caching; partitioning of code and its parallelism; and communication strategies between program components across devices. We propose programming abstractions for NIC-accelerated applications, balancing the ease of developing a correct application and the ability to refactor it to explore different design choices. The design space includes semantic changes as well as variations on parallelization and program-to-resource mapping. Our abstractions include logical and physical queues and a construct for mapping the former onto the latter; global per-packet state; a remote caching construct; and an interface to external application code. We develop Floem, a programming system that provides these abstractions, and show that the system helps explore a space of NIC-offloading designs for real-world applications, including a key-value store and a distributed real-time data analytics system, improving throughput by 1.3--3.6x. 
    more » « less